
Group Representation Theory

Exercises

1 Representations

1. Let G = C4 × C2 =
〈
σ, τ | σ4 = τ2 = e, στ = τσ

〉
. Consider the matrices

S =

(
1 0
0 i

)
and T =

(
−1 0
0 1

)
Verify that sending σ 7→ S and τ 7→ T defines a representation of G. Now
let

Q =

(
i 0
1 1

)
and R =

(
−1 0
i+ 1 1

)
Verify that sending σ 7→ Q and τ 7→ R also defines a representation of G.
Show that S is conjugate to Q. Show that R is conjugate to T . Are these
two representations equivalent?

2. Using the natural bases, write down:

(a) The 3-dimensional permutation representation of S3.

(b) The regular representation of C5.

(It’s enough to give the values on generators for each group.)

3. Recall that S3 and D3 are the same group. Draw an equilateral triangle
in the plane with vertices at

v1 = (1, 0), v2 = (−1

2
,

√
3

2
), v3 = (−1

2
,−
√

3

2
)

From this picture we can construct a 2-dimensional representation of S3.

(a) In the standard basis, what matrix represents the permutation (123)?

(b) In the standard basis, what matrix represents the permutation (23)?

(c) Find a new basis in which the first of these matrices becomes diago-
nal. Write down the second matrix in this new basis.

4. Write down the regular representation of C2 in the natural basis. Write
down an equivalent matrix representation of C2 in which all the matrices
are diagonal.
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5. Let f : H → G be a group homomorphism, and let

ρ : G→ GL(V )

be a representation.

(a) Suppose ρ is a trivial representation. Show that ρ ◦ f is also trivial.

(b) Suppose f is surjective. Show that if ρ ◦ f is a trivial representation
then ρ must also be trivial.

(c) Give an example of an f and a ρ such that ρ ◦ f is trivial but ρ is
not trivial.

6. (a) Show that any 1-dimensional representation of a group G must be
constant over conjugacy classes.

(b) Recall that the group Sn is generated by transpositions, and that
all transpositions are conjugate. Prove that Sn has exactly two 1-
dimensional irreps.

7. Advanced question: Let G be a group, and H ⊂ G be a subgroup of
index k. Explain how we can use H to construct a representation of G of
dimension k. If G = Sn and H = An, what representation do we get?

8. (a) Prove Claim 1.4.2 from the notes. Prove that the composition of two
G-linear maps is G-linear.

(b) Prove Claim 1.4.9. from the notes.

(c) Prove Claim 1.5.1 from the notes.

9. Let V be a vector space with basis {b1, ..., bn}. Let G be a subgroup of
Sn, and let ρ : G→ GL(V ) be the permutation representation. Consider
the vector

x = b1 + b2 + ...+ bn

(a) Show that 〈x〉 ⊂ V is a subrepresentation. What 1-dimensional rep-
resentation is it isomorphic to?

So permutation representations are never irreducible! Find examples
in the notes of specific permutation representations where we found
this 1-dimensional subrepresentation.

(b) Find a G-linear projection from V to 〈x〉. Hint: look in the notes.

10. Let ρV : G→ GL(V ) and ρW : G→ GL(W ) be two isomorphic represen-
tations of G. Prove that V is irreducible iff W is irreducible.

11. Let G = D4 = 〈σ, τ |σ4 = τ2 = e, τστ = σ−1〉. There is a 3-dimensional
representation of G

ρ : G→ GL3(C)

defined by

ρ(σ) =

 1 0 0
1 0 −1
−1 1 0

 , ρ(τ) =

1 0 0
0 1 0
0 0 −1
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Find a 1-dimensional irrep U1 of ρ. Can you find another one? Deduce
that ρ can be decomposed as a direct sum

C3 = U1 ⊕ U2

where U2 is a 2-dimensional irrep. NB: you don’t need to find U2.

12. Let G = 〈µ〉 be the infinite cyclic group, also known as (Z,+). Then

ρ(µ) =

(
1 1
0 1

)
defines a matrix representation of G. Find a 1-dimensional subrepresenta-
tion U of ρ, and show that there is no complementary subrepresentation
to U . Where in the proof of Maschke’s Theorem did we have to use the
fact that G was finite?

13. Advanced question:

(a) Suppose we want to think about representations of finite groups over
a field F different from C. What assumption do we need on F to
make the proof of Maschke’s Theorem work?

(b) Let F = F2. Let G = C2 =
〈
µ | µ2 = e

〉
. Show that

ρ(µ) =

(
1 1
0 1

)
defines a representation ofG. Find a 1-dimensional subrepresentation
with no complementary subrepresentation.

14. a) Let ρV : G→ GL(V ) and ρW : G→ GL(W ) be two irreps of G, with
dimV 6= dimW . Show that the only G-linear map from V to W is
the zero map.

b) Let G = C6. How many irreps of G are there? How many of these
irreps are faithful?

15. Prove Claim 1.6.5 from the notes. Using the same argument, prove Claim
1.6.7.

16. Let g, h ∈ G be elements such that gh = hg. Let ρ : G → GL(V ) be a
representation. Prove that there exists a basis of V in which both ρ(g)
and ρ(h) become diagonal matrices.

17. Let U , V and W be vector spaces, and let

φ ∈ Hom(U, V ) and ψ ∈ Hom(V,W )

Show that both maps

◦φ : Hom(V,W )→ Hom(U,W )

f 7→ f ◦ φ
and

ψ◦ : Hom(U, V )→ Hom(U,W )

f 7→ ψ ◦ f
are linear. Deduce Claim 1.7.2.
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18. Prove Claim 1.7.4.

19. Let G = S3, with generators σ = (123) and τ = (12). Let ρ : G→ GL(V )
be the 2-dimensional representation

ρ(σ) =

(
ω 0
0 ω−1

)
ρ(τ) =

(
0 1
1 0

)
where ω = e

2πi
3 .

(a) Write down the representation Hom(V, V ) in the usual basis.

(b) How do we know that Hom(V, V )G must be 1-dimensional? Find a
vector that spans it.

(c) Find the decomposition of Hom(V, V ) into irreps.

20. Let G = D5 =
〈
σ, τ | σ5 = τ2 = e, τστ = σ−1

〉
.

a) Show that G has exactly two 1-dimensional representations.

b) Find how many irreps of G there are (up to isomorphism), and find
their dimensions.

21. Let G = Dk =
〈
σ, τ | σk = τ2 = e, τστ = σ−1

〉
.

(a) Show that the number of 1-dimensional representations of G is 2 if k
is odd, and 4 if k is even.

(b) Find the dimensions of all irreps of G, for the cases k = 6, 7 and 8.

22. (a) Let G be any group, and let V = C2 be the two-dimensional trivial
representation of G. Find a pair U , W of irreducible subrepresenta-
tions of V such that

V = U ⊕W

Now find another subrepresentation W ′, different from W , such that
we also have

V = U ⊕W ′

So although the irreps occuring in the two decompositions are isomor-
phic, they don’t have to be the same subrepresentations.

(b) Advanced question: Now let G be any group, and let U and W be
any two non-isomorphic irreps of G. Let

V = U ⊕W

Show that if W ′ is a subrepresention of V , and W ′ is isomorphic to
W , then W ′ and W must be the same subrepresentation. Hint: Show
that any two G-linear injections from W to V must have the same
image.

23. Prove Claim 1.9.8. Hint: Think about block diagonal matrices.

24. Let G = Ck, so the irreps of G are ρ0, ..., ρk−1. What is the dual of the
irrep ρq? Which irrep do we get if we tensor ρq and ρr together?
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25. Let V and W be representations of G. Pick bases for V and W , and find an
isomorphism of representations between V ⊗W and W⊗V . Without pick-
ing bases, find an isomorphism of representations between Hom(V ∗,W )
and Hom(W ∗, V ).

26. Let G = Dk =
〈
σ, τ | σk = τ2 = e, τστ = σ−1

〉
. Let V = C2, and let

ρV : G→ GL(V ) be the representation

ρV (σ) =

(
α 0
0 α−1

)
, ρV (τ) =

(
0 1
1 0

)
where α is a kth root of unity. Let W = C, and let ρW be the represen-
tation

ρW (σ) = 1, ρW (τ) = −1

a) Verify that ρV is a representation.

b) Using the standard bases, write down the dual representation V ∗,
the representation V ⊗W , and the representation Hom(V,W ).

2 Characters

27. Let ρ : G→ GL1(C) be a 1-dimensional representation, and let χρ be its
character. Show that χρ(g) is a root of unity, for all g ∈ G.

28. Look back at Question 1, where we defined two representations of C4×C2.
Show, by considering their characters, that the two representations are not
equivalent.

29. Let G = S3.

(a) Write down the three irreducible characters of G. You only need to
write down their values on each conjugacy class.

(b) Let V be the 2-dimensional irrep of G. Find the characters of V ∗,
V ⊗ V and Hom(V, V ).

(c) Write the character of Hom(V, V ) as a linear combination of the
irreducible characters. Check that your answer is consistent with
your answer to Question 19.

30. Let X be a set with n elements, and let G be a subgroup of the group of
all permutations of X. Let ρ be the associated n-dimensional permutation
representation of G.

(a) Show that χρ(g) equals the size of the set

{x ∈ X, g(x) = x}

(b) Show that the function
ξ : G→ C

ξ(g) = χρ(g)− 1

is also a character of G. Hint: Look at Question 9.
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31. Let G = D4 = 〈σ, τ |σ4 = τ2 = e, τστ = σ−1〉.

(a) Show that σ is conjugate to σ3, that τ is conjugate to σ2τ , and that
στ is conjugate to σ3τ . Deduce that G contains at most 5 conjugacy
classes.

(b) Write down the four irreducible characters of G corresponding to the
four 1-dimensional irreps (see Question 21).

(c) Show that G contains exactly 5 conjugacy classes.

32. Let G = C3 =
〈
µ | µ3 = e

〉
.

(a) Write down the three irreducible characters χ0, χ1, χ2 of G corre-
sponding to the three irreps U0, U1, U2.

(b) There’s a 2-dimensional representation ρ of C3 defined by

ρ(µ) =

(
0 1
−1 −1

)
, ρ(µ2) =

(
−1 −1
1 0

)
Write down the character χ of ρ. Compute the inner product 〈χ|χ1〉.
How many copies of U1 occur in the irrep decomposition of ρ?

33. Let G be the alternating group A4 ⊂ S4. There are 4 conjugacy classes in
A4, they have representatives (1), (123), (132), (12)(34), and sizes 1,4, 4, 3
respectively.

(a) Find the number of irreps of G and their dimensions.

(b) Let χ4 : G→ C be the function which is constant on each cycle type,
and takes the values

χ4((1)) = 3 χ4((123)) = χ4((132)) = 0 χ4((12)(34)) = −1

Using Question 30, show that χ4 is a character of G. Prove that χ4

is irreducible.

(c) Based on what we’ve found so far, write down as much of the char-
acter table of G as you can. Using row and/or column orthogonality,
write down equations for the remaining entries.

(d) Find the values of all the irreducible characters on the class of (12)(34).

(e) Show that all remaining entries must be cube roots of unity (hint:
use Question 27 ) and hence find the complete character table.

(f) Advanced question: Why are your results consistent with the fact
that there is a surjective homomorphism from A4 to C3?

34. Let G = A4 again, and let χ1, ..., χ4 be the irreducible characters we found
in Question 33. let U1, ..., U4 be the corresponding irreps of G. Find the
decomposition of U4 ⊗ U4 into irreps.

35. Prove the converse to Proposition 1.6.2, i.e. that if all the irreps of G are
1-dimensional then G must be abelian. Hint: find the number of conjugacy
classes in G.
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36. Use the column orthogonality relations to deduce Corollary 1.8.12. Now
use them to show that in Proposition 2.1.8, we can deduce part (ii) from
part (i).

37.
g1 g2 g3

|[gi]| 1 2 3
|Cgi | 6 3 2
χ1 1 1 1
χ2 1 1 −1
χ3 2 x y

Find the unknown values x, y in the above character table, (a) using row
orthogonality, then (b) using column orthogonality.

3 Algebras and modules

38. Let G = S3 = 〈σ, τ |σ3 = τ2 = e, τστ = σ−1〉. Let A = C[G] be the
group algebra of G.

a) What is the dimension of A? What is the unit element in A?

b) Let a be the element

a = e+ σ + τ ∈ A

Compute a2.

39. Show that C[G] is commutative iff G is abelian.

40. Find an isomorphism of algebras between C[C3] and C⊕ C⊕ C.

41. Let A and B be algebras. Show that the projection map π : A ⊕ B → A
is a homomorphism, but that the inclusion map ι : A→ A⊕B is not.

42. Let A be any algebra. Show that the zero-dimensional vector space {0} is
an A-module.

43. (Advanced question) Define an A-module to be a vector space M together
with a bilinear map

µ : A×M →M

such that
µ(1A,m) = m, ∀m ∈M

and
µ(ab,m) = µ(a, µ(b,m)), ∀a, b ∈ A and m ∈M.

Prove that this definition is equivalent to the one given in the notes.

44. (Advanced question) Find an algebra A which is not isomorphic to its
opposite algebra Aop.

45. State how many simple A-modules (up to isomorphism) there are, in the
cases:
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(a) A = C[S3]

(b) A = C[C2]⊕ C[S3].

46. Show (directly) that the matrix algebra Mat2×2(C) has no 1-dimensional
modules. Hint: Look at the relations between the standard basis elements.

47. Let A = C[C3]. Viewing A as an A-module, find all of its 1-dimensional
submodules.

48. Prove Claim 3.2.9 from the notes.

49. (a) (Trivial representations don’t generalize). Let A be an algebra, and
let M be a vector space. Suppose we try and define an A-module
structure on M by the rule

ax = x, ∀a ∈ A, x ∈M

What is wrong with this definition?

(b) (Tensor product representations don’t generalize). Let M and N be
modules, and let {x1, ..., xm} and {y1, ..., yn} be bases for M and N
(as vector spaces). Suppose we try and define an A-module structure
on the vector space M ⊗N by the rule

a(xi ⊗ yj) = a(xi)⊗ a(yj)

for all a ∈ A. What is wrong with this definition?

50. (a) Let f : A → B be an algebra homomorphism. Show that the same
linear map defines an algebra homomorphism f : Aop → Bop.

(b) Let M be an A-module. Show that M∗ = Hom(M,C) is naturally
an Aop-module.

51. Show that there are no homomorphisms from Mat2×2(C) to Mat3×3(C).

52. Let G = C4. Write down an isomorphism from C[G] to a direct sum of
matrix algebras. Do the same for G = D4.

53. Prove that every commutative simple-simple algebra is isomorphic to C[G]
for some group G.

54. Find an example of a pair of groups G and H such G and H are not iso-
morphic, but C[G] and C[H] are isomorphic algebras. Now find infinitely-
many such pairs.

55. Let A be the 3-dimensional algebra 〈1, x, x2〉 where x3 = 0.

(i) Write down the homomorphism

A→ Mat3×3(C)

that we get by viewing A as an A-module, and using the given basis.

(ii) Show that A is not a semi-simple algebra.
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56. Let A be the subspace

A =

{(
x y
0 z

)
, x, y, x ∈ C

}
⊂ Mat2×2(C)

(a) Verify that A is a subalgebra.

(b) Find a 2-dimensional A-module which is not semi-simple.

(c) Find a 2-dimensional subalgebra B ⊂ A which is semi-simple.

57. Let G = S3, and let U1 and U3 be the trivial and 2-dimensional irreps of
G. Let A be the algebra

A = HomG(U1 ⊕ U3, U1 ⊕ U3)

Find a subalgebra of Mat3×3 that is isomorphic to A. Is A semi-simple?

58. Up to isomorphism, how many semi-simple algebras are there which have
dimension 7?
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