Group Representation Theory Exercises

1 Representations

1. Let $G=C_{4} \times C_{2}=\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{2}=e, \sigma \tau=\tau \sigma\right\rangle$. Consider the matrices

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Verify that sending $\sigma \mapsto S$ and $\tau \mapsto T$ defines a representation of G. Now let

$$
Q=\left(\begin{array}{ll}
i & 0 \\
1 & 1
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{cc}
-1 & 0 \\
i+1 & 1
\end{array}\right)
$$

Verify that sending $\sigma \mapsto Q$ and $\tau \mapsto R$ also defines a representation of G. Show that S is conjugate to Q. Show that R is conjugate to T. Are these two representations equivalent?
2. Using the natural bases, write down:
(a) The 3-dimensional permutation representation of S_{3}.
(b) The regular representation of C_{5}.
(It's enough to give the values on generators for each group.)
3. Recall that S_{3} and D_{3} are the same group. Draw an equilateral triangle in the plane with vertices at

$$
v_{1}=(1,0), \quad v_{2}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad v_{3}=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
$$

From this picture we can construct a 2-dimensional representation of S_{3}.
(a) In the standard basis, what matrix represents the permutation (123)?
(b) In the standard basis, what matrix represents the permutation (23)?
(c) Find a new basis in which the first of these matrices becomes diagonal. Write down the second matrix in this new basis.
4. Write down the regular representation of C_{2} in the natural basis. Write down an equivalent matrix representation of C_{2} in which all the matrices are diagonal.
5. Let $f: H \rightarrow G$ be a group homomorphism, and let

$$
\rho: G \rightarrow G L(V)
$$

be a representation.
(a) Suppose ρ is a trivial representation. Show that $\rho \circ f$ is also trivial.
(b) Suppose f is surjective. Show that if $\rho \circ f$ is a trivial representation then ρ must also be trivial.
(c) Give an example of an f and a ρ such that $\rho \circ f$ is trivial but ρ is not trivial.
6. (a) Show that any 1-dimensional representation of a group G must be constant over conjugacy classes.
(b) Recall that the group S_{n} is generated by transpositions, and that all transpositions are conjugate. Prove that S_{n} has exactly two 1dimensional irreps.
7. Advanced question: Let G be a group, and $H \subset G$ be a subgroup of index k. Explain how we can use H to construct a representation of G of dimension k. If $G=S_{n}$ and $H=A_{n}$, what representation do we get?
8. (a) Prove Claim 1.4.2 from the notes. Prove that the composition of two G-linear maps is G-linear.
(b) Prove Claim 1.4.9. from the notes.
(c) Prove Claim 1.5.1 from the notes.
9. Let V be a vector space with basis $\left\{b_{1}, \ldots, b_{n}\right\}$. Let G be a subgroup of S_{n}, and let $\rho: G \rightarrow G L(V)$ be the permutation representation. Consider the vector

$$
x=b_{1}+b_{2}+\ldots+b_{n}
$$

(a) Show that $\langle x\rangle \subset V$ is a subrepresentation. What 1-dimensional representation is it isomorphic to?
So permutation representations are never irreducible! Find examples in the notes of specific permutation representations where we found this 1-dimensional subrepresentation.
(b) Find a G-linear projection from V to $\langle x\rangle$. Hint: look in the notes.
10. Let $\rho_{V}: G \rightarrow G L(V)$ and $\rho_{W}: G \rightarrow G L(W)$ be two isomorphic representations of G. Prove that V is irreducible iff W is irreducible.
11. Let $G=D_{4}=\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{2}=e, \tau \sigma \tau=\sigma^{-1}\right\rangle$. There is a 3-dimensional representation of G

$$
\rho: G \rightarrow G L_{3}(\mathbb{C})
$$

defined by

$$
\rho(\sigma)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right), \quad \rho(\tau)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Find a 1-dimensional irrep U_{1} of ρ. Can you find another one? Deduce that ρ can be decomposed as a direct sum

$$
\mathbb{C}^{3}=U_{1} \oplus U_{2}
$$

where U_{2} is a 2-dimensional irrep. NB: you don't need to find U_{2}.
12. Let $G=\langle\mu\rangle$ be the infinite cyclic group, also known as $(\mathbb{Z},+)$. Then

$$
\rho(\mu)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

defines a matrix representation of G. Find a 1-dimensional subrepresentation U of ρ, and show that there is no complementary subrepresentation to U. Where in the proof of Maschke's Theorem did we have to use the fact that G was finite?
13. Advanced question:
(a) Suppose we want to think about representations of finite groups over a field \mathbb{F} different from \mathbb{C}. What assumption do we need on \mathbb{F} to make the proof of Maschke's Theorem work?
(b) Let $\mathbb{F}=\mathbb{F}_{2}$. Let $G=C_{2}=\left\langle\mu \mid \mu^{2}=e\right\rangle$. Show that

$$
\rho(\mu)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

defines a representation of G. Find a 1-dimensional subrepresentation with no complementary subrepresentation.
14. a) Let $\rho_{V}: G \rightarrow G L(V)$ and $\rho_{W}: G \rightarrow G L(W)$ be two irreps of G, with $\operatorname{dim} V \neq \operatorname{dim} W$. Show that the only G-linear map from V to W is the zero map.
b) Let $G=C_{6}$. How many irreps of G are there? How many of these irreps are faithful?
15. Prove Claim 1.6.5 from the notes. Using the same argument, prove Claim 1.6.7.
16. Let $g, h \in G$ be elements such that $g h=h g$. Let $\rho: G \rightarrow G L(V)$ be a representation. Prove that there exists a basis of V in which both $\rho(g)$ and $\rho(h)$ become diagonal matrices.
17. Let U, V and W be vector spaces, and let

$$
\phi \in \operatorname{Hom}(U, V) \quad \text { and } \quad \psi \in \operatorname{Hom}(V, W)
$$

Show that both maps

$$
\begin{gathered}
\circ \phi: \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}(U, W) \\
f \mapsto f \circ \phi
\end{gathered}
$$

and

$$
\begin{gathered}
\psi \circ: \operatorname{Hom}(U, V) \rightarrow \operatorname{Hom}(U, W) \\
f \mapsto \psi \circ f
\end{gathered}
$$

are linear. Deduce Claim 1.7.2.
18. Prove Claim 1.7.4.
19. Let $G=S_{3}$, with generators $\sigma=(123)$ and $\tau=(12)$. Let $\rho: G \rightarrow G L(V)$ be the 2-dimensional representation

$$
\rho(\sigma)=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right) \quad \rho(\tau)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where $\omega=e^{\frac{2 \pi i}{3}}$.
(a) Write down the representation $\operatorname{Hom}(V, V)$ in the usual basis.
(b) How do we know that $\operatorname{Hom}(V, V)^{G}$ must be 1-dimensional? Find a vector that spans it.
(c) Find the decomposition of $\operatorname{Hom}(V, V)$ into irreps.
20. Let $G=D_{5}=\left\langle\sigma, \tau \mid \sigma^{5}=\tau^{2}=e, \tau \sigma \tau=\sigma^{-1}\right\rangle$.
a) Show that G has exactly two 1-dimensional representations.
b) Find how many irreps of G there are (up to isomorphism), and find their dimensions.
21. Let $G=D_{k}=\left\langle\sigma, \tau \mid \sigma^{k}=\tau^{2}=e, \tau \sigma \tau=\sigma^{-1}\right\rangle$.
(a) Show that the number of 1-dimensional representations of G is 2 if k is odd, and 4 if k is even.
(b) Find the dimensions of all irreps of G, for the cases $k=6,7$ and 8 .
22. (a) Let G be any group, and let $V=\mathbb{C}^{2}$ be the two-dimensional trivial representation of G. Find a pair U, W of irreducible subrepresentations of V such that

$$
V=U \oplus W
$$

Now find another subrepresentation W^{\prime}, different from W, such that we also have

$$
V=U \oplus W^{\prime}
$$

So although the irreps occuring in the two decompositions are isomorphic, they don't have to be the same subrepresentations.
(b) Advanced question: Now let G be any group, and let U and W be any two non-isomorphic irreps of G. Let

$$
V=U \oplus W
$$

Show that if W^{\prime} is a subrepresention of V, and W^{\prime} is isomorphic to W, then W^{\prime} and W must be the same subrepresentation. Hint: Show that any two G-linear injections from W to V must have the same image.
23. Prove Claim 1.9.8. Hint: Think about block diagonal matrices.
24. Let $G=C_{k}$, so the irreps of G are $\rho_{0}, \ldots, \rho_{k-1}$. What is the dual of the irrep ρ_{q} ? Which irrep do we get if we tensor ρ_{q} and ρ_{r} together?
25. Let V and W be representations of G. Pick bases for V and W, and find an isomorphism of representations between $V \otimes W$ and $W \otimes V$. Without picking bases, find an isomorphism of representations between $\operatorname{Hom}\left(V^{*}, W\right)$ and $\operatorname{Hom}\left(W^{*}, V\right)$.
26. Let $G=D_{k}=\left\langle\sigma, \tau \mid \sigma^{k}=\tau^{2}=e, \tau \sigma \tau=\sigma^{-1}\right\rangle$. Let $V=\mathbb{C}^{2}$, and let $\rho_{V}: G \rightarrow G L(V)$ be the representation

$$
\rho_{V}(\sigma)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right), \quad \rho_{V}(\tau)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where α is a k th root of unity. Let $W=\mathbb{C}$, and let ρ_{W} be the representation

$$
\rho_{W}(\sigma)=1, \quad \rho_{W}(\tau)=-1
$$

a) Verify that ρ_{V} is a representation.
b) Using the standard bases, write down the dual representation V^{*}, the representation $V \otimes W$, and the representation $\operatorname{Hom}(V, W)$.

2 Characters

27. Let $\rho: G \rightarrow G L_{1}(\mathbb{C})$ be a 1-dimensional representation, and let χ_{ρ} be its character. Show that $\chi_{\rho}(g)$ is a root of unity, for all $g \in G$.
28. Look back at Question 1, where we defined two representations of $C_{4} \times C_{2}$. Show, by considering their characters, that the two representations are not equivalent.
29. Let $G=S_{3}$.
(a) Write down the three irreducible characters of G. You only need to write down their values on each conjugacy class.
(b) Let V be the 2-dimensional irrep of G. Find the characters of V^{*}, $V \otimes V$ and $\operatorname{Hom}(V, V)$.
(c) Write the character of $\operatorname{Hom}(V, V)$ as a linear combination of the irreducible characters. Check that your answer is consistent with your answer to Question 19.
30. Let X be a set with n elements, and let G be a subgroup of the group of all permutations of X. Let ρ be the associated n-dimensional permutation representation of G.
(a) Show that $\chi_{\rho}(g)$ equals the size of the set

$$
\{x \in X, g(x)=x\}
$$

(b) Show that the function

$$
\begin{gathered}
\xi: G \rightarrow \mathbb{C} \\
\xi(g)=\chi_{\rho}(g)-1
\end{gathered}
$$

is also a character of G. Hint: Look at Question 9.
31. Let $G=D_{4}=\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{2}=e, \tau \sigma \tau=\sigma^{-1}\right\rangle$.
(a) Show that σ is conjugate to σ^{3}, that τ is conjugate to $\sigma^{2} \tau$, and that $\sigma \tau$ is conjugate to $\sigma^{3} \tau$. Deduce that G contains at most 5 conjugacy classes.
(b) Write down the four irreducible characters of G corresponding to the four 1-dimensional irreps (see Question 21).
(c) Show that G contains exactly 5 conjugacy classes.
32. Let $G=C_{3}=\left\langle\mu \mid \mu^{3}=e\right\rangle$.
(a) Write down the three irreducible characters $\chi_{0}, \chi_{1}, \chi_{2}$ of G corresponding to the three irreps U_{0}, U_{1}, U_{2}.
(b) There's a 2-dimensional representation ρ of C_{3} defined by

$$
\rho(\mu)=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), \quad \rho\left(\mu^{2}\right)=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)
$$

Write down the character χ of ρ. Compute the inner product $\left\langle\chi \mid \chi_{1}\right\rangle$. How many copies of U_{1} occur in the irrep decomposition of ρ ?
33. Let G be the alternating group $A_{4} \subset S_{4}$. There are 4 conjugacy classes in A_{4}, they have representatives (1), (123), (132), (12)(34), and sizes $1,4,4,3$ respectively.
(a) Find the number of irreps of G and their dimensions.
(b) Let $\chi_{4}: G \rightarrow \mathbb{C}$ be the function which is constant on each cycle type, and takes the values

$$
\chi_{4}((1))=3 \quad \chi_{4}((123))=\chi_{4}((132))=0 \quad \chi_{4}((12)(34))=-1
$$

Using Question 30, show that χ_{4} is a character of G. Prove that χ_{4} is irreducible.
(c) Based on what we've found so far, write down as much of the character table of G as you can. Using row and/or column orthogonality, write down equations for the remaining entries.
(d) Find the values of all the irreducible characters on the class of (12)(34).
(e) Show that all remaining entries must be cube roots of unity (hint: use Question 27) and hence find the complete character table.
(f) Advanced question: Why are your results consistent with the fact that there is a surjective homomorphism from A_{4} to C_{3} ?
34. Let $G=A_{4}$ again, and let $\chi_{1}, \ldots, \chi_{4}$ be the irreducible characters we found in Question 33. let U_{1}, \ldots, U_{4} be the corresponding irreps of G. Find the decomposition of $U_{4} \otimes U_{4}$ into irreps.
35. Prove the converse to Proposition 1.6.2, i.e. that if all the irreps of G are 1-dimensional then G must be abelian. Hint: find the number of conjugacy classes in G.
36. Use the column orthogonality relations to deduce Corollary 1.8.12. Now use them to show that in Proposition 2.1.8, we can deduce part (ii) from part (i).
37.

	g_{1}	g_{2}	g_{3}
$\left\|\left[g_{i}\right]\right\|$	1	2	3
$\left\|C_{g_{i}}\right\|$	6	3	2
χ_{1}	1	1	1
χ_{2}	1	1	-1
χ_{3}	2	x	y

Find the unknown values x, y in the above character table, (a) using row orthogonality, then (b) using column orthogonality.

3 Algebras and modules

38. Let $G=S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}=\tau^{2}=e, \tau \sigma \tau=\sigma^{-1}\right\rangle$. Let $A=\mathbb{C}[G]$ be the group algebra of G.
a) What is the dimension of A ? What is the unit element in A ?
b) Let a be the element

$$
a=e+\sigma+\tau \in A
$$

Compute a^{2}.
39. Show that $\mathbb{C}[G]$ is commutative iff G is abelian.
40. Find an isomorphism of algebras between $\mathbb{C}\left[C_{3}\right]$ and $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$.
41. Let A and B be algebras. Show that the projection map $\pi: A \oplus B \rightarrow A$ is a homomorphism, but that the inclusion map $\iota: A \rightarrow A \oplus B$ is not.
42. Let A be any algebra. Show that the zero-dimensional vector space $\{0\}$ is an A-module.
43. (Advanced question) Define an A-module to be a vector space M together with a bilinear map

$$
\mu: A \times M \rightarrow M
$$

such that

$$
\mu\left(1_{A}, m\right)=m, \quad \forall m \in M
$$

and

$$
\mu(a b, m)=\mu(a, \mu(b, m)), \quad \forall a, b \in A \text { and } m \in M
$$

Prove that this definition is equivalent to the one given in the notes.
44. (Advanced question) Find an algebra A which is not isomorphic to its opposite algebra $A^{o p}$.
45. State how many simple A-modules (up to isomorphism) there are, in the cases:
(a) $A=\mathbb{C}\left[S_{3}\right]$
(b) $A=\mathbb{C}\left[C_{2}\right] \oplus \mathbb{C}\left[S_{3}\right]$.
46. Show (directly) that the matrix algebra $\operatorname{Mat}_{2 \times 2}(\mathbb{C})$ has no 1-dimensional modules. Hint: Look at the relations between the standard basis elements.
47. Let $A=\mathbb{C}\left[C_{3}\right]$. Viewing A as an A-module, find all of its 1-dimensional submodules.
48. Prove Claim 3.2.9 from the notes.
49. (a) (Trivial representations don't generalize). Let A be an algebra, and let M be a vector space. Suppose we try and define an A-module structure on M by the rule

$$
a x=x, \quad \forall a \in A, x \in M
$$

What is wrong with this definition?
(b) (Tensor product representations don't generalize). Let M and N be modules, and let $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ be bases for M and N (as vector spaces). Suppose we try and define an A-module structure on the vector space $M \otimes N$ by the rule

$$
a\left(x_{i} \otimes y_{j}\right)=a\left(x_{i}\right) \otimes a\left(y_{j}\right)
$$

for all $a \in A$. What is wrong with this definition?
50. (a) Let $f: A \rightarrow B$ be an algebra homomorphism. Show that the same linear map defines an algebra homomorphism $f: A^{o p} \rightarrow B^{o p}$.
(b) Let M be an A-module. Show that $M^{*}=\operatorname{Hom}(M, \mathbb{C})$ is naturally an $A^{o p}$-module.
51. Show that there are no homomorphisms from $\operatorname{Mat}_{2 \times 2}(\mathbb{C})$ to $\operatorname{Mat}_{3 \times 3}(\mathbb{C})$.
52. Let $G=C_{4}$. Write down an isomorphism from $\mathbb{C}[G]$ to a direct sum of matrix algebras. Do the same for $G=D_{4}$.
53. Prove that every commutative simple-simple algebra is isomorphic to $\mathbb{C}[G]$ for some group G.
54. Find an example of a pair of groups G and H such G and H are not isomorphic, but $\mathbb{C}[G]$ and $\mathbb{C}[H]$ are isomorphic algebras. Now find infinitelymany such pairs.
55. Let A be the 3-dimensional algebra $\left\langle 1, x, x^{2}\right\rangle$ where $x^{3}=0$.
(i) Write down the homomorphism

$$
A \rightarrow \operatorname{Mat}_{3 \times 3}(\mathbb{C})
$$

that we get by viewing A as an A-module, and using the given basis.
(ii) Show that A is not a semi-simple algebra.
56. Let A be the subspace

$$
A=\left\{\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right), x, y, x \in \mathbb{C}\right\} \subset \operatorname{Mat}_{2 \times 2}(\mathbb{C})
$$

(a) Verify that A is a subalgebra.
(b) Find a 2 -dimensional A-module which is not semi-simple.
(c) Find a 2-dimensional subalgebra $B \subset A$ which is semi-simple.
57. Let $G=S_{3}$, and let U_{1} and U_{3} be the trivial and 2-dimensional irreps of G. Let A be the algebra

$$
A=\operatorname{Hom}_{G}\left(U_{1} \oplus U_{3}, U_{1} \oplus U_{3}\right)
$$

Find a subalgebra of $\operatorname{Mat}_{3 \times 3}$ that is isomorphic to A. Is A semi-simple?
58. Up to isomorphism, how many semi-simple algebras are there which have dimension 7 ?

