Group Representation Theory Exercises

1 Representations

1. Let $G = C_4 \times C_2 = \langle \sigma, \tau \mid \sigma^4 = \tau^2 = e, \ \sigma \tau = \tau \sigma \rangle$. Consider the matrices

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad \text{and} \qquad T = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Verify that sending $\sigma \mapsto S$ and $\tau \mapsto T$ defines a representation of G. Now let

$$Q = \begin{pmatrix} i & 0\\ 1 & 1 \end{pmatrix} \qquad \text{and} \qquad R = \begin{pmatrix} -1 & 0\\ i+1 & 1 \end{pmatrix}$$

Verify that sending $\sigma \mapsto Q$ and $\tau \mapsto R$ also defines a representation of G. Show that S is conjugate to Q. Show that R is conjugate to T. Are these two representations equivalent?

- 2. Using the natural bases, write down:
 - (a) The 3-dimensional permutation representation of S_3 .
 - (b) The regular representation of C_5 .

(It's enough to give the values on generators for each group.)

3. Recall that S_3 and D_3 are the same group. Draw an equilateral triangle in the plane with vertices at

$$v_1 = (1,0), \quad v_2 = (-\frac{1}{2}, \frac{\sqrt{3}}{2}), \quad v_3 = (-\frac{1}{2}, -\frac{\sqrt{3}}{2})$$

From this picture we can construct a 2-dimensional representation of S_3 .

- (a) In the standard basis, what matrix represents the permutation (123)?
- (b) In the standard basis, what matrix represents the permutation (23)?
- (c) Find a new basis in which the first of these matrices becomes diagonal. Write down the second matrix in this new basis.
- 4. Write down the regular representation of C_2 in the natural basis. Write down an equivalent matrix representation of C_2 in which all the matrices are diagonal.

5. Let $f: H \to G$ be a group homomorphism, and let

$$\rho: G \to GL(V)$$

be a representation.

- (a) Suppose ρ is a trivial representation. Show that $\rho \circ f$ is also trivial.
- (b) Suppose f is surjective. Show that if $\rho \circ f$ is a trivial representation then ρ must also be trivial.
- (c) Give an example of an f and a ρ such that $\rho \circ f$ is trivial but ρ is not trivial.
- 6. (a) Show that any 1-dimensional representation of a group G must be constant over conjugacy classes.
 - (b) Recall that the group S_n is generated by transpositions, and that all transpositions are conjugate. Prove that S_n has exactly two 1-dimensional irreps.
- 7. Advanced question: Let G be a group, and $H \subset G$ be a subgroup of index k. Explain how we can use H to construct a representation of G of dimension k. If $G = S_n$ and $H = A_n$, what representation do we get?
- 8. (a) Prove Claim 1.4.2 from the notes. Prove that the composition of two *G*-linear maps is *G*-linear.
 - (b) Prove Claim 1.4.9. from the notes.
 - (c) Prove Claim 1.5.1 from the notes.
- 9. Let V be a vector space with basis $\{b_1, ..., b_n\}$. Let G be a subgroup of S_n , and let $\rho: G \to GL(V)$ be the permutation representation. Consider the vector

$$x = b_1 + b_2 + \dots + b_n$$

(a) Show that $\langle x \rangle \subset V$ is a subrepresentation. What 1-dimensional representation is it isomorphic to?

So permutation representations are never irreducible! Find examples in the notes of specific permutation representations where we found this 1-dimensional subrepresentation.

- (b) Find a G-linear projection from V to $\langle x \rangle$. Hint: look in the notes.
- 10. Let $\rho_V : G \to GL(V)$ and $\rho_W : G \to GL(W)$ be two isomorphic representations of G. Prove that V is irreducible iff W is irreducible.
- 11. Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau = \sigma^{-1} \rangle$. There is a 3-dimensional representation of G

$$\rho: G \to GL_3(\mathbb{C})$$

defined by

$$\rho(\sigma) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \qquad \rho(\tau) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Find a 1-dimensional irrep U_1 of ρ . Can you find another one? Deduce that ρ can be decomposed as a direct sum

$$\mathbb{C}^3 = U_1 \oplus U_2$$

where U_2 is a 2-dimensional irrep. NB: you don't need to find U_2 .

12. Let $G = \langle \mu \rangle$ be the *infinite* cyclic group, also known as $(\mathbb{Z}, +)$. Then

$$\rho(\mu) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

defines a matrix representation of G. Find a 1-dimensional subrepresentation U of ρ , and show that there is no complementary subrepresentation to U. Where in the proof of Maschke's Theorem did we have to use the fact that G was finite?

- 13. Advanced question:
 - (a) Suppose we want to think about representations of finite groups over a field \mathbb{F} different from \mathbb{C} . What assumption do we need on \mathbb{F} to make the proof of Maschke's Theorem work?
 - (b) Let $\mathbb{F} = \mathbb{F}_2$. Let $G = C_2 = \langle \mu \mid \mu^2 = e \rangle$. Show that

$$\rho(\mu) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

defines a representation of G. Find a 1-dimensional subrepresentation with no complementary subrepresentation.

- 14. a) Let $\rho_V : G \to GL(V)$ and $\rho_W : G \to GL(W)$ be two irreps of G, with $\dim V \neq \dim W$. Show that the only G-linear map from V to W is the zero map.
 - b) Let $G = C_6$. How many irreps of G are there? How many of these irreps are faithful?
- 15. Prove Claim 1.6.5 from the notes. Using the same argument, prove Claim 1.6.7.
- 16. Let $g, h \in G$ be elements such that gh = hg. Let $\rho : G \to GL(V)$ be a representation. Prove that there exists a basis of V in which both $\rho(g)$ and $\rho(h)$ become diagonal matrices.
- 17. Let U, V and W be vector spaces, and let

$$\phi \in \operatorname{Hom}(U, V)$$
 and $\psi \in \operatorname{Hom}(V, W)$

Show that both maps

$$\circ \phi : \operatorname{Hom}(V, W) \to \operatorname{Hom}(U, W)$$
$$f \mapsto f \circ \phi$$

and

$$\psi \circ : \operatorname{Hom}(U, V) \to \operatorname{Hom}(U, W)$$

$$f\mapsto\psi\circ f$$

are linear. Deduce Claim 1.7.2.

- 18. Prove Claim 1.7.4.
- 19. Let $G = S_3$, with generators $\sigma = (123)$ and $\tau = (12)$. Let $\rho : G \to GL(V)$ be the 2-dimensional representation

$$\rho(\sigma) = \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix} \qquad \rho(\tau) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

where $\omega = e^{\frac{2\pi i}{3}}$.

- (a) Write down the representation Hom(V, V) in the usual basis.
- (b) How do we know that $\operatorname{Hom}(V, V)^G$ must be 1-dimensional? Find a vector that spans it.
- (c) Find the decomposition of Hom(V, V) into irreps.
- 20. Let $G = D_5 = \langle \sigma, \tau \mid \sigma^5 = \tau^2 = e, \tau \sigma \tau = \sigma^{-1} \rangle$.
 - a) Show that G has exactly two 1-dimensional representations.
 - b) Find how many irreps of G there are (up to isomorphism), and find their dimensions.
- 21. Let $G = D_k = \langle \sigma, \tau \mid \sigma^k = \tau^2 = e, \tau \sigma \tau = \sigma^{-1} \rangle$.
 - (a) Show that the number of 1-dimensional representations of G is 2 if k is odd, and 4 if k is even.
 - (b) Find the dimensions of all irreps of G, for the cases k = 6, 7 and 8.
- 22. (a) Let G be any group, and let $V = \mathbb{C}^2$ be the two-dimensional trivial representation of G. Find a pair U, W of irreducible subrepresentations of V such that

$$V = U \oplus W$$

Now find another subrepresentation W', different from W, such that we also have

$$V = U \oplus W'$$

So although the irreps occuring in the two decompositions are isomorphic, they don't have to be the same subrepresentations.

(b) Advanced question: Now let G be any group, and let U and W be any two non-isomorphic irreps of G. Let

$$V = U \oplus W$$

Show that if W' is a subrepresention of V, and W' is isomorphic to W, then W' and W must be the same subrepresentation. *Hint: Show that any two G-linear injections from* W *to* V *must have the same image.*

- 23. Prove Claim 1.9.8. Hint: Think about block diagonal matrices.
- 24. Let $G = C_k$, so the irreps of G are $\rho_0, ..., \rho_{k-1}$. What is the dual of the irrep ρ_q ? Which irrep do we get if we tensor ρ_q and ρ_r together?

- 25. Let V and W be representations of G. Pick bases for V and W, and find an isomorphism of representations between $V \otimes W$ and $W \otimes V$. Without picking bases, find an isomorphism of representations between $\text{Hom}(V^*, W)$ and $\text{Hom}(W^*, V)$.
- 26. Let $G = D_k = \langle \sigma, \tau | \sigma^k = \tau^2 = e, \tau \sigma \tau = \sigma^{-1} \rangle$. Let $V = \mathbb{C}^2$, and let $\rho_V : G \to GL(V)$ be the representation

$$\rho_V(\sigma) = \begin{pmatrix} \alpha & 0\\ 0 & \alpha^{-1} \end{pmatrix}, \qquad \rho_V(\tau) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

where α is a kth root of unity. Let $W = \mathbb{C}$, and let ρ_W be the representation

$$\rho_W(\sigma) = 1, \qquad \rho_W(\tau) = -1$$

- a) Verify that ρ_V is a representation.
- b) Using the standard bases, write down the dual representation V^* , the representation $V \otimes W$, and the representation Hom(V, W).

2 Characters

- 27. Let $\rho: G \to GL_1(\mathbb{C})$ be a 1-dimensional representation, and let χ_{ρ} be its character. Show that $\chi_{\rho}(g)$ is a root of unity, for all $g \in G$.
- 28. Look back at Question 1, where we defined two representations of $C_4 \times C_2$. Show, by considering their characters, that the two representations are not equivalent.
- 29. Let $G = S_3$.
 - (a) Write down the three irreducible characters of G. You only need to write down their values on each conjugacy class.
 - (b) Let V be the 2-dimensional irrep of G. Find the characters of V^* , $V \otimes V$ and Hom(V, V).
 - (c) Write the character of Hom(V, V) as a linear combination of the irreducible characters. Check that your answer is consistent with your answer to Question 19.
- 30. Let X be a set with n elements, and let G be a subgroup of the group of all permutations of X. Let ρ be the associated n-dimensional permutation representation of G.
 - (a) Show that $\chi_{\rho}(g)$ equals the size of the set

$$\{x \in X, g(x) = x\}$$

(b) Show that the function

$$\xi: G \to \mathbb{C}$$

$$\xi(g) = \chi_{\rho}(g) - 1$$

is also a character of G. Hint: Look at Question 9.

- 31. Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau = \sigma^{-1} \rangle$.
 - (a) Show that σ is conjugate to σ^3 , that τ is conjugate to $\sigma^2 \tau$, and that $\sigma \tau$ is conjugate to $\sigma^3 \tau$. Deduce that G contains at most 5 conjugacy classes.
 - (b) Write down the four irreducible characters of G corresponding to the four 1-dimensional irreps (see Question 21).
 - (c) Show that G contains exactly 5 conjugacy classes.
- 32. Let $G = C_3 = \langle \mu \mid \mu^3 = e \rangle$.
 - (a) Write down the three irreducible characters χ_0, χ_1, χ_2 of G corresponding to the three irreps U_0, U_1, U_2 .
 - (b) There's a 2-dimensional representation ρ of C_3 defined by

$$\rho(\mu) = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \qquad \rho(\mu^2) = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$

Write down the character χ of ρ . Compute the inner product $\langle \chi | \chi_1 \rangle$. How many copies of U_1 occur in the irrep decomposition of ρ ?

- 33. Let G be the alternating group $A_4 \subset S_4$. There are 4 conjugacy classes in A_4 , they have representatives (1), (123), (132), (12)(34), and sizes 1,4, 4, 3 respectively.
 - (a) Find the number of irreps of G and their dimensions.
 - (b) Let $\chi_4 : G \to \mathbb{C}$ be the function which is constant on each cycle type, and takes the values

$$\chi_4((1)) = 3$$
 $\chi_4((123)) = \chi_4((132)) = 0$ $\chi_4((12)(34)) = -1$

Using Question 30, show that χ_4 is a character of G. Prove that χ_4 is irreducible.

- (c) Based on what we've found so far, write down as much of the character table of G as you can. Using row and/or column orthogonality, write down equations for the remaining entries.
- (d) Find the values of all the irreducible characters on the class of (12)(34).
- (e) Show that all remaining entries must be cube roots of unity (*hint: use Question 27*) and hence find the complete character table.
- (f) Advanced question: Why are your results consistent with the fact that there is a surjective homomorphism from A_4 to C_3 ?
- 34. Let $G = A_4$ again, and let $\chi_1, ..., \chi_4$ be the irreducible characters we found in Question 33. let $U_1, ..., U_4$ be the corresponding irreps of G. Find the decomposition of $U_4 \otimes U_4$ into irreps.
- 35. Prove the converse to Proposition 1.6.2, i.e. that if all the irreps of G are 1-dimensional then G must be abelian. *Hint: find the number of conjugacy classes in* G.

- 36. Use the column orthogonality relations to deduce Corollary 1.8.12. Now use them to show that in Proposition 2.1.8, we can deduce part (ii) from part (i).
- 37.

	g_1	g_2	g_3
$ [g_i] $	1	2	3
$ C_{g_i} $	6	3	2
χ_1	1	1	1
χ_2	1	1	$^{-1}$
χ_3	2	x	y

Find the unknown values x, y in the above character table, (a) using row orthogonality, then (b) using column orthogonality.

3 Algebras and modules

- 38. Let $G = S_3 = \langle \sigma, \tau | \sigma^3 = \tau^2 = e, \tau \sigma \tau = \sigma^{-1} \rangle$. Let $A = \mathbb{C}[G]$ be the group algebra of G.
 - a) What is the dimension of A? What is the unit element in A?
 - b) Let a be the element

$$a = e + \sigma + \tau \in A$$

Compute a^2 .

39. Show that $\mathbb{C}[G]$ is commutative iff G is abelian.

- 40. Find an isomorphism of algebras between $\mathbb{C}[C_3]$ and $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$.
- 41. Let A and B be algebras. Show that the projection map $\pi : A \oplus B \to A$ is a homomorphism, but that the inclusion map $\iota : A \to A \oplus B$ is not.
- 42. Let A be any algebra. Show that the zero-dimensional vector space $\{0\}$ is an A-module.
- 43. (Advanced question) Define an A-module to be a vector space M together with a bilinear map

$$\mu:A\times M\to M$$

such that

$$\mu(1_A, m) = m, \qquad \forall m \in M$$

and

 $\mu(ab, m) = \mu(a, \mu(b, m)), \quad \forall a, b \in A \text{ and } m \in M.$

Prove that this definition is equivalent to the one given in the notes.

- 44. (Advanced question) Find an algebra A which is not isomorphic to its opposite algebra A^{op} .
- 45. State how many simple A-modules (up to isomorphism) there are, in the cases:

- (a) $A = \mathbb{C}[S_3]$ (b) $A = \mathbb{C}[C_2] \oplus \mathbb{C}[S_3].$
- 46. Show (directly) that the matrix algebra $\operatorname{Mat}_{2\times 2}(\mathbb{C})$ has no 1-dimensional modules. *Hint: Look at the relations between the standard basis elements.*
- 47. Let $A = \mathbb{C}[C_3]$. Viewing A as an A-module, find all of its 1-dimensional submodules.
- 48. Prove Claim 3.2.9 from the notes.
- 49. (a) (Trivial representations don't generalize). Let A be an algebra, and let M be a vector space. Suppose we try and define an A-module structure on M by the rule

$$ax = x, \qquad \forall a \in A, x \in M$$

What is wrong with this definition?

(b) (Tensor product representations don't generalize). Let M and N be modules, and let $\{x_1, ..., x_m\}$ and $\{y_1, ..., y_n\}$ be bases for M and N (as vector spaces). Suppose we try and define an A-module structure on the vector space $M \otimes N$ by the rule

$$a(x_i \otimes y_j) = a(x_i) \otimes a(y_j)$$

for all $a \in A$. What is wrong with this definition?

- 50. (a) Let $f : A \to B$ be an algebra homomorphism. Show that the same linear map defines an algebra homomorphism $f : A^{op} \to B^{op}$.
 - (b) Let M be an A-module. Show that $M^* = \text{Hom}(M, \mathbb{C})$ is naturally an A^{op} -module.
- 51. Show that there are no homomorphisms from $Mat_{2\times 2}(\mathbb{C})$ to $Mat_{3\times 3}(\mathbb{C})$.
- 52. Let $G = C_4$. Write down an isomorphism from $\mathbb{C}[G]$ to a direct sum of matrix algebras. Do the same for $G = D_4$.
- 53. Prove that every commutative simple-simple algebra is isomorphic to $\mathbb{C}[G]$ for some group G.
- 54. Find an example of a pair of groups G and H such G and H are not isomorphic, but $\mathbb{C}[G]$ and $\mathbb{C}[H]$ are isomorphic algebras. Now find infinitelymany such pairs.
- 55. Let A be the 3-dimensional algebra $(1, x, x^2)$ where $x^3 = 0$.
 - (i) Write down the homomorphism

$$A \to \operatorname{Mat}_{3 \times 3}(\mathbb{C})$$

that we get by viewing A as an A-module, and using the given basis.

(ii) Show that A is not a semi-simple algebra.

56. Let A be the subspace

$$A = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}, \ x, y, x \in \mathbb{C} \right\} \subset \operatorname{Mat}_{2 \times 2}(\mathbb{C})$$

- (a) Verify that A is a subalgebra.
- (b) Find a 2-dimensional A-module which is not semi-simple.
- (c) Find a 2-dimensional subalgebra $B\subset A$ which is semi-simple.
- 57. Let $G = S_3$, and let U_1 and U_3 be the trivial and 2-dimensional irreps of G. Let A be the algebra

$$A = \operatorname{Hom}_G(U_1 \oplus U_3, U_1 \oplus U_3)$$

Find a subalgebra of $Mat_{3\times 3}$ that is isomorphic to A. Is A semi-simple?

58. Up to isomorphism, how many semi-simple algebras are there which have dimension 7?